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Abstract

An approximate theoretical enthalpy model is developed to study the phase-change process in porous media. During

the melting or the freezing process, the interface within a pore remains at the phase-change temperature until the

process is completed. Since the melting process is relatively slow, the assumption of local thermal equilibrium is not

universally valid. This theoretical study leads to the development of working relations. An approximate two-tem-

perature model is studied analytically. The results provide the parametric information concerning the phase-change

front. Also, the conditions that would assure the existence of local thermal equilibrium are presented. Ó 2001 Elsevier

Science Ltd. All rights reserved.

1. Introduction

Moving boundary problems in porous media have

practical relevance in nature and in the ®eld of en-

gineering. Applications range from freezing of biological

tissues, thermal energy storage, cooling of electronic

equipment to food processing. Solidi®cation in a ¯ow

through a porous medium is commonly encountered in

the formation of metal matrix composites by in®ltration

of molten metals into ®brous preforms [1,2]. Previous

investigations conducted on ¯ow through porous media

hypothesized that the solid matrix and the primary

material within the pore satisfy the local thermal equi-

librium condition, thus heat transfer parameters were

predicted based on the isothermal condition. Sahraoui

and Kaviany [3±5] reported a one-equation model of the

heat transfer process associated with the boundary be-

tween the ¯uid and solid phase in the porous media. The

existence of a local thermal equilibrium condition in

porous media becomes uncertain for applications that

involve rapid heating processes, and in nuclear reactor

modeling, where the temperature gradient between the

¯uid and solid matrix is signi®cant. Beckermann and

Viskanta [6] investigated natural convection (solid/liquid

phase change) in porous media by treating the entire

domain as a single region governed by one set of con-

servation equations. They concluded that some de-

®ciencies exist between results obtained from their

mathematical and experimental models.

Heat transfer analysis based on a two-equation

model at the boundary between a porous medium and a

homogeneous ¯uid has been investigated [7]. They found

that ¯ux jump conditions exist between a porous me-

dium and a homogeneous ¯uid when the condition of

local thermal equilibrium is invalid and, as a result,

separate transport equations are required for each

phase. Recently, Vafai and Sozen [8] reported a two-

phase equation model of ¯ow through a porous

medium. Results obtained from their study revealed a

signi®cant discrepancy between the ¯uid and solid phase

temperature distribution.

Phase-change materials have received consideration

in the defense industries for cooling of electronics and in

telecommunication equipment to control internal tem-

perature under emergency operating conditions. It is

understood that electronic equipment is susceptible to

failure when exposed to extreme temperatures. As an
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example, telecommunication equipment located at a re-

mote site can su�er abrupt power failure. Numerous nu-

merical and analytical methods have been developed

dealing with phase-change problems in non-porous media

[9]. These methods include the perturbation method, the

approximate Galerkin method, ®nite element method,

enthalpy method, and various transformation methods.

Applying a classical method to every pore is a cumber-

some task. This complexity is rooted in the fact that the

pro®les of solid±liquid interface change from pore-to-

pore, and the existence of non-local thermal equilibrium

condition between the primary material in the pore and

the solid matrix. The main thrust of this investigation is to

develop an approximate method of predicting the extent

of a phase-change process in a porous media assuming a

non-local thermal equilibrium condition.

The phase-change materials with melting points be-

tween 40°C and 80°C usually have low thermal con-

ductivity. For this reason, it is customary to encapsulate

these materials in a sponge-like metal matrix with high

thermal conductivity. The current practice is to analyze

these systems assuming the existence of local thermal

equilibrium, thereby the solid wall remains at the phase-

change temperature while melting is in progress. This

assumption is somewhat unrealistic and can be im-

proved. A complete solution requires an extensive nu-

merical undertaking. The objective of this work is to

introduce a linearized enthalpy model that maintains a

temperature di�erence between the phase-change ma-

terials and the walls of a pore while it accepts a standard

analytical solution technique.

2. Energy equation

A non-equilibrium phenomenon occurs during

melting or freezing of phase-change materials encapsu-

lated in a porous medium. The characteristic length to

pore size and the thermophysical properties of the me-

dium in¯uence this non-equilibrium phenomenon. Let

the subscript ``s'' identify the solid matrix and subscript

``p'' designate materials in the pores. The material in a

pore can be solid, liquid, or both whose local enthalpy

per unit volume is Hp�~r; t�. The energy equation applied

to a di�erential element, shown in Fig. 1, is in Amiri and

Vafai [10,11], and a modi®ed form is

e
oHp�~r; t�

ot
� ÿr � qp�~r; t� � hac�Ts ÿ Tp� � Sp�~r; t�; �1�

�1ÿ e�Cs

oTs�~r; t�
ot

� ÿr � qs�~r; t� ÿ hac�Ts ÿ Tp� � Ss�~r; t�;
�2�

where h is the interstitial heat transfer coe�cient,

ac � e=rh and rh � Vp=Ap is the hydraulic radius. Other

Nomenclature

ac e=rh

Ap pore surface area (m2)

C C � e �Cp � �1ÿ e�Cs (J mÿ3 Kÿ1)
�Cp mean heat capacitance of materials in pores

(J mÿ3 Kÿ1)

Cs solid heat capacitance (J mÿ3 Kÿ1)

D constant

E relative deviation

Fo Fourier number, at=X 2

h interstitial heat transfer coe�cient

(W mÿ2 Kÿ1)

Hp enthalpy of the phase-change material

(J mÿ3)

q�0; t� surface heat ¯ux (W mÿ2)

qp heat ¯ux within the primary phase (W mÿ2)

qs heat ¯ux within the solid matrix (W mÿ2)

q�r; t� local heat ¯ux (W mÿ2)

ke equivalent thermal conductivity

(W mÿ1 Kÿ1)

L latent heat (J kgÿ1)

L ��� Laplace transform operator

Vp volume of the pore (m3)

r st=sa

~r position vector (m)

rh hydraulic radius, Vp=Ap (m)

S volumetric heat source (W mÿ3)

Sp Sparrow number, hX=kerh

t time (s)

To surface temperature (K)

Tp mean temperature of pore materials (K)

Ts solid matrix temperature (K)

Tm phase-change temperature (K)

x coordinate (m)

X location of the front (m)

X � X
�������������������������������������������
2qL=�psake�To ÿ Tm��

p
Greek symbols

a thermal di�usivity, ke=C (m2 sÿ1)

e Vf =V
g t=sa

h �Tp ÿ Tm�=�To ÿ Tm�
s dummy variable

sa se � sq (s)

se Csst=C (s)

sq lag time, heat ¯ux (s)

st rh
�Cp=h (s)

n x=
�������
asa
p

Subscripts

p phase-change materials in pores

s solid matrix
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parameters are de®ned in the nomenclature. The func-

tion Sp�~r; t� and Ss�~r; t� are the contribution of a source

or a sink within the primary phase and the solid matrix,

and qp�~r; t� and qs�~r; t� are the respective heat ¯ux

components by conduction. For this application, there is

no heat generation in the solid matrix, Ss�~r; t� � 0.

It is clear that the temperature of the solid matrix,

during a melting process, remains higher than the mean

temperature of materials in the pores. During this

period, the value of the volumetric heat source Sp varies

with time and temperature as the liquid fraction changes

in a pore. The temperature solution, using Eqs. (1) and

(2), requires information as to the value of the interstitial

heat transfer coe�cient h. The value of h depends on the

geometry of the pores and the nature of the primary

phase. Because the size and shape of individual pores are

di�erent, the function Tp represents the mean tempera-

ture of solid and liquid materials occupying the pores.

2.1. A linearized theoretical model

Before the onset of the phase-change process and

after its completion, there is a local thermal equilibrium

condition; that is, Ts � Tp. During the phase-change

process, the mean temperature of the phase-change

materials in the pores, Tp, varies between the solid

matrix temperature Ts and the phase-change tempera-

ture Tm. Assuming the lumped heat capacitance method

is valid during the phase-change process, the heat ¯ux to

the materials in a pore causes a change in the enthalpy of

the phase-change materials according to the relation

DVp

oHp

ot
� hDAp�Ts ÿ Tp�: �3�

A mean temperature for the materials in a pore is de-

®ned using the relation Hp � �CpTp, where �Cp is a con-

stant. According to this de®nition, �Cp includes the

contribution of the latent heat of the phase-change

materials allowing one to consider Sp � 0 in Eq. (1).

Since the mean capacitance in a pore is considered to be

a constant, then Eq. (3) is rewritten as

Ts�~r; t� � Tp�~r; t� � rh
�Cp

h
oTp�~r; t�

ot
: �4�

A mean value for the �Cp will be determined later by

examining the asymptotic behavior of the solution. Eqs.

(1), (2), and (4) describe the transfer of heat in a porous

structure whose pores are occupied with phase-change

materials. Adding Eqs. (1) and (2), replacing qp � qs

with q, and setting Sp�~r; t� � Ss�~r; t� � 0 yields the rela-

tion

ÿr � q�~r; t� � e �Cp

oTp�~r; t�
ot

� �1ÿ e�Cs

oTs�~r; t�
ot

: �5�

In a porous medium, the equivalent thermal conduc-

tivity models often are developed for isothermal con-

ditions. Prior to the onset of local thermal equilibrium,

the Fourier thermal conduction model should be mod-

i®ed Tzou [12]. The Fourier conduction equation during

this period is replaced by the equation

q�~r; t� � sq
oq�~r; t�

ot
� ÿke rTp�~r; t�

�
� st

o
ot
rTp�~r; t�
h i�

:

�6�
Comparison of Eq. (6) with Eq. (4) suggests that

st � rh
�Cp=h. Eliminating the heat ¯ux vector q between

Eq. (5) and Eq. (6) results in the relation [13].

r � �kerTp� � st
o�r � �kerTp��

ot

� C
oTp

ot

�
� �se � sq� o

2Tp

ot2

�
; �7�

where se � Csst=C and C � e �Cp � �1ÿ e�Cs:

2.2. A one-dimensional solution

Eq. (7) is linear in temperature if the thermophysical

properties are considered to be independent of tem-

perature. In the subsequent analysis, it is assumed the

conduction is one-dimensional and the domain of in-

terest is a semi-in®nite body. This is mainly for con-

venience of demonstrating the underlying physical

phenomena. During the phase change, the value of �Cp

changes with Tp and the governing equation is non-lin-

ear. For a linearized solution, one needs to ®nd an av-

erage �Cp and C. Therefore, assuming ke and C have

constant values, Eq. (7) reduces to

a
o2Tp

ox2
� ast

o3Tp

otox2
� oTp

ot
� sa

o2Tp

ot2
for 06 x <1;

�8a�
where sa � se � sq and a � ke=C.

Consideration is given to a semi-in®nite porous me-

dium ®lled with a phase-change material. The medium is

Fig. 1. Schematic representation of a di�erential element.
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initially at the melting temperature Tm and the surface

temperature, at x� 0, increases to temperature To when

t > 0. When r � st=sa � 1, Eq. (8a) reduces to

1

�
� st

o
ot

�
a

o2Tp

ox2

�
ÿ oTp

ot

�
� 0 for 06 x <1; �8b�

whose solution is

Tp ÿ Tm

To ÿ Tm

� erfc
x�������
4at
p

� �
: �9�

Eq. (9) suggests a method of ®nding a theoretical mean

value for C assuming it is independent of st, sa and t;

therefore, C should be the same for inclusion in Eqs. (8a)

and (8b). In various phase-change studies, the quasi-

steady-state assumption is considered when time is rel-

atively large. One can de®ne a melt front X whose

location is related to heat ¯ux at x� 0 by the re-

lation, q�0; t� � ÿkeoTp=ox � qLoX=ot, where L is the

latent heat (J/kg). When x=
�������
4at
p � 1, temperature

is linear with error of the order of �x= �������
4at
p �3 and a

quasi-steady-state assumption suggests q�0; t� �
ke�To ÿ Tm�=X � qLoX=ot that, after integration, yields

the relation

X �
��������������������������
2ke�To ÿ Tm�

qL

s ��
t
p
: �10�

Eq. (9), when t is large, one can de®ne an equivalent

front X that should approach the equilibrium solution.

Following substitution of Tp from Eq. (9) in

ÿ�keoTp=ox�jx�0 � qLoX=ot and integration over time,

one obtains

X � 2ke�To ÿ Tm�
qL

������
pa
p ��

t
p
: �11�

Equating Eqs. (10) and (11), at the same X location,

provides a mean value for the capacitance, that is,

C � pqL
2�To ÿ Tm� : �12�

The parameter sa in Eq. (8a) has a zero value if st � 0

and sq � 0; therefore, sa 6� 0 in the presence of non-

equilibrium phenomena. Accordingly, Eq. (8a), using

dimensionless parameters,

n � x=
�������
asa
p

; g � t=sa; r � st=sa; and

h � �Tp ÿ Tm�=�To ÿ Tm� �13�

reduces to

o2h

on2
� r

o3h

ogon2
� oh

og
� o2h

og2
for 06 n <1: �14�

The Laplace transform of h using the conditions

h�n; 0� � 0, oh=otjg�0 � 0, and h�0; g� � 1 becomes

�h �L�h� � 1

s
eÿ

��������������������
s�s�1�=�rs�1�
p

n: �15�

Because the sensible heat is much smaller than the latent

heat, the phase-change materials are viewed as the pri-

mary consumers of the surface heat ¯ux. In this case, a

parameter X, de®ned as ÿ�ke oTp=ox�jx�0 � qLoX=ot,
can be written in dimensionless form as

o
og

����
a
sa

r
qLX

ke�To ÿ Tm�
� �

� oX �

og
� ÿ oh

on

����
n�0

; �16�

where X � in Eq. (16) is X � � ���������
a=sa

p �qLX �=�ke�To ÿ Tm��.
An alternative form of X � is derived by replacing a with

ke=C and the value of C from Eq. (12) to obtain

X � � X
�������������������������������������������
2qL=�psake�To ÿ Tm��

p
. The Laplace transform

of X �, using Eqs. (15) and (16) and following some al-

gebra, the Laplace transform of X � is

L�X �� � 1

s2

����������������
s�s� 1�
rs� 1

r
� 1��

r
p sÿ1=2
ÿ � sÿ3=2

�� 1���������������
s� 1=r

p �����������
s� 1
p �17�

whose inverse transform, using the convolution the-

orem, Churchill [14] is

X � � 1��
r
p
Z g

s�0

1�����������������
p�gÿ s�p � 2

�����������
gÿ s

p

r !

� exp

��
ÿ 1

2
1

�
� 1

r

�
s

�
� Io

r ÿ 1

2r
s

� ��
ds: �18�

3. Results and discussion

Eq. (18) is well suited for a numerical study using

symbolic mathematical software. A function in

MATHEMATICA [15] code that provides the value of

X �, named ``conv'' is given in Appendix A. This

MATHEMATICA [15] function was placed in a loop to

provide the needed data and the output was directly

transferred to a spreadsheet for a graphic presentation.

Fig. 2 shows the variation of the dimensionless front X �

as a function of g for di�erent values of the parameter r.

An examination of data in Fig. 2 shows that X � lin-

early depends on g1=2 � ��������
t=sa

p
when g is large or when

r� 1. Moreover, under the local thermal equilibrium

condition st � sq � 0, the r� 1 line in Fig. 2 describes

the solution by setting sa � 1 or any other non-zero

constant. According to Fig. 2, when r < 1, the value of

X � is larger than the predicted value from a local ther-

mal equilibrium model. Alternatively, when r > 1, the

phase-change front progresses slower than the local

thermal equilibrium model.

Three parameters C, st, and sq emerged in this

modeling. No information concerning these three
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parameters was found in the literature. A mean value for

the heat capacitance C was found earlier. The parameter

st is related to the interstitial heat transfer coe�cient in a

mean pore and the parameter sq is related to the thermal

contact resistance across the solid matrix. In theory, it is

possible to experimentally determine st and sq. Also, it is

possible to provide a theoretical determination of

st � rh
�Cp=h following estimation of h. In as much as the

contact resistance and subsequently sq depend on the

structure of a speci®c porous matrix, the value of sq

should be determined experimentally.

In this enthalpy model, the phase-change material

has a mean temperature Tp; and its heat capacitance, �Cp,

is related to C, Eq. (12), by the relation �Cp �
�C ÿ �1ÿ e�Cs�=e. If the material in a pore is homo-

geneous, the value of h is constant using only the ®rst

eigenvalue in a series solution. When the shape of a pore

is a sphere, a cylindrical prism, or a square prism,

Minkowycz et al. [13] reports hrh=kp � 1:09; 1:45;
or 1:23. Despite the signi®cant variance in shapes these

numbers are within a narrow band; therefore, in the

absence of experimental data, a mean value of 1.26 is a

satisfactory approximation for hrh=kp.

This approximate method permits establishing a cri-

terion for the onset of thermal equilibrium, an interest-

ing feature of this method. Based on data in Fig. 2, as

time increases, the solution approaches the lines desig-

nated by r� 1 and a solution that assumes local thermal

equilibrium is valid. The departure from the local ther-

mal equilibrium is viewed as

X ��g; r� ÿ X ��g; 1� � EX ��g; 1�: �19�
For a given pair of E and r, the root of Eq. (19) will be

designated as go. The parameter go identi®es the di-

mensionless time g > go when X ��g; r� is within

E � 100% of X ��g; 1� for the same g. The parameter go is

computed for di�erent values of E using MATHEM-

ATICA [15]. Because go is large when r > 1 and rela-

tively smaller when r < 1, two separate graphs are

prepared for clarity of this presentation. When r < 1, the

solid lines in Fig. 3 show the values of go as a function of

r for E � 100% � 1%, 2%, 5%, and 10%. The corre-

sponding value of X ��go; r� is also plotted as dashed lines

in the same ®gure and it is designated as �X ��o. Fig. 4 is

prepared for r > 1 in a similar manner as that for Fig. 3.

It is notable that go is nearly linear in Figs. 3 and 4

away from r� 1; that is,

go � D�1ÿ r� when r < 1; �20a�
and

go � D�r ÿ 1� when r > 1: �20b�
The values of dimensionless constant D depend on E for

the data in Figs. 3 and 4. The values of D, in Fig. 3, are

25.2, 12.7, 5.22, and 2.74 for 1%, 2%, 5%, and 10% de-

viations, respectively. For the same deviations, the cor-

responding values of D for the solid lines in Fig. 4

are 25.5, 13.0, 5.61, and 3.07. It is observed that the

parameter D, for a given deviation E, has nearly the same

value for inclusion in Eqs. (20a) and (20b). The value of

Fig. 3. Dimensionless time, go, and phase-change front, �X ��o,

when r < 1, for a near local thermal equilibrium condition.

Fig. 4. Dimensionless time, go, and phase-change front, �X ��o,

when r > 1, for a near local thermal equilibrium condition.

Fig. 2. Dimensionless front X � as a function of dimensionless

time g for di�erent values of parameter r.
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D can be estimated from D� 0.26/E or, for a better

accuracy, from the relation D � 3:27Eÿ0:942. Therefore,

the condition of local thermal equilibrium can be written

as

t > Dj�1ÿ Cs=C�st ÿ sqj: �21�
When Cs � C and sq is small �r� 1�, the condition of

local thermal equilibrium is achieved when

t > Dst � Drh
�Cp=h: �22�

Furthermore, using X as a characteristic length, Eq. (22),

in dimensionless form, reduces to at=X 2 >
Drha �Cp=�hX 2�. The left side of this equation is

Fo � at=X 2, where Fo is the Fourier number whereas the

right side is D� �Cp=C�=Sp, where Sp� hX2/kerh is the

Sparrow number [13]. The local thermal equilibrium

may be considered when Eq. (22) is written as

FoSp > D� �Cp=C�:
Alternatively, assuming hrh=kp � 1:26, Eq. (22) yields a

further simpli®ed condition for the onset of the local

thermal equilibrium condition; that is, Fop �
kpt=� �Cpr2

h� > 0:8D.

4. Conclusion

A casual examination of the phase-change process in

a porous medium shows that a departure from local

thermal equilibrium is an existing phenomenon. The

underlying heat transfer process is a complex one and

requires further theoretical studies. Following a de-

scription of the physical process, this work presents an

approximate method of determining the extent of a

phase-change process as a function of time.

The procedure described here enables one to analyze

conduction in porous media in the presence of phase-

change phenomena. Upon rapid melting or solidi®ca-

tion, there will be departure from local thermal equi-

librium. This presentation quantitizes the conditions

for occurrence of this local thermal equilibrium. For

this analysis, three parameters are needed. First, the

mean heat capacitance C that includes the e�ect of

latent heat is predicted theoretically. Second, the pa-

rameter sq describes the e�ect of contact resistance that

depends on the speci®c porous structure. For best

melting or freezing performance, sq should be as small

as possible, e.g. sq � 0. The third and most important

parameter, st, describes the e�ect of the interstitial heat

transfer coe�cient. Presently, no experimental infor-

mation is available for predicting st. In the absence of

experimental data, the relation hrh=kp � 1:26 enable

one to predict the onset and departure from local

thermal equilibrium during melting and solidi®cation

process.

Appendix A

Below is a function ``conv(t_,r_)'', in MATHEM-

ATICA [15] code, to evaluate the function X � from

Eq. (18). The ®rst parameter in the argument of ``conv''

function is g and the second parameter is r. As a nu-

merical sample, this function is used to provide

X ��4; 0:3� � 2:36335 and X ��4; 3� � 1:90894 at the end

of the code.

conv[t1_,a1_]:� (

f1� 1/Sqrt[Pi*x]+2*Sqrt[x/Pi];

f2�Exp[)(1+1/a1)*(t1 ) x)/2]*Bess-

elI[0,(a1 ) 1)*(t1 ) x)/2/a1];

f� f1*f2/Sqrt[a1];

rt� Integrate[f,{x,0,t1}];

Return[rt])

N[conv[4,0.3]]

N[conv[4,3]]

Out[1]� 2.36335

Out[2]� 1.90894
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